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Abstract
In heterogeneous and dynamic environments, efficient resource usage can require mappings

of tasks to resources whose performance varies both in space and in time. While adaptive domain
decomposition techniques have been used to address heterogeneous resource capabilities,
tempora variaions in those cepabiliies have sddom been consdered. We propose a
conservative scheduling policy that uses information about expected future variance in resource
capabilities to produce more efficient data mapping decisons. Evauation of severa new one-
step-ahead and low-overhead time series prediction drategies shows that a dynamic tendency
prediction modd with different ascending and descending behavior performs best. We extend a
one-step-ahead predictor to predict average resource capabilities for some future time interva
and variation of resource capabilities over some future time interva. We present a family of
dochagtic scheduling dgorithms that exploit such predictions when making data-mapping
decisons. Experimentd results with a CPU-bound astrophysics application and a GridFTP
implementation demondrate that conservative scheduling can produce execution times that are

both sgnificantly faster and less variable than other techniques.

1 Introduction
In multiuser time-shared systems, performance may vary in both time and space because of

competing gpplications. Effective use of such heterogeneous and dynamic systems requires new
approaches to performance prediction and data mapping. We present here a conservative
scheduling technique that uses predicted mean and variance resource capacity information to
make data- mapping decisions.

We proceed as follows. First, we review related work (Section 2), describe the problem
(Section 3), and evduate several new one-step-ahead and low-overhead time series prediction

drategies that track recent trends by giving more weight to recent data (Section 4). Next we



extend the one-step-ahead prediction drategy to obtain average resource cagpability for some
future time intervd and variation of resource capability over some future time interva (Section
5). We then (Section 6) introduce our consarvative scheduling method and describe experimenta
results when our drategies are applied to a CPU-bound application and a pardle data transfer
implementation (Section 7). Section 8 presents our conclusons about the effectiveness of our

approach for multiple runs in heterogeneous environments.

2 Related Work
Many researchers [7,10,18,22-24,32] have explored the use of time-bdancing or load

badancing models to reduce application execution time in heterogeneous environments. However,
their work has typicaly assumed that resource performance is congant or dowly changing, and
thus such work does not take later variance into account. For example, Dail [10] and Liu e 4.
[24] use the 10-second-ahead predicted CPU information provided by the Network Wegther
Service (NWS) [33,34] to guide scheduling decisons. While this one-step-ahead prediction a a
time point is often a good estimate for the next 10 seconds, it is less effective in predicting the
available CPU during alonger execution.

Dinda e d. use multiple-step-ahead predictions of host load [16] and their associated error
covariance information to predict the running times of tasks as confidence intervas [12]. These
confidence intervas, a representation of prediction error variances, can then be used for various
scheduling gods [13]. In contrast, we predict the variance of resource load itsdf and focus on
scheduling data pardld tasks to minimize overdl runtime.

Yang and Casanova [39,40] present a multiround scheduling dgorithm for divisble
workloads. They use sysem peformance information collected a scheduling time to decide a

workload dlocation scheme. If the sysem datus changes dramaticdly during execution of the



application, the scheduler is switched to a greedy dgorithm that assigns more work to idle
computers. However, this drategy is limited to agpplications whose subtasks are independent of
each other. The loosdy synchronous application we concerned with, on the other hand, involve
communications among subtasks.

Dome [5] and Mars [20] support dynamic workload baancing through migration and make
the application adaptive to the dynamic environment a runtime. But the implementation of such
adaptive drategies can be complex and is not feasible for al applications.

Schopf and Berman [28] defined a stochastic scheduling policy based on time baancing for
data-pardld agpplications. The idea is to dlocate less work to machines with higher load
variance. Their agorithm uses the mean and varidion of the higory information but assumes that
the associated stochagtic data can be described by a normd digtribution, an assumption they
admit is not dways vdid [15,26].

In our gpproach, we define a time-badancing scheduling drategy based on the prediction of
the next interval of time and a prediction of the variance. Our am is to achieve faster and less

variable gpplication execution time.

3 Problem Statement
Efficent execution in a didributed sysem can require mechanisms for the discovery of

available resources, the selection of a job-appropriate subset of those resources, and the mapping
of data or tasks onto selected resources. Here, we assume that the target set of resources is fixed,
and we focus on the data-mapping problem for data-paralld computation and transfer jobs. We
do not assume that the resources have identica or even fixed cgpabilities or identica underlying
loads. Our god is to achieve data assgnments that balance load between resources so that each

resource finishes executing a roughly the same time, thereby minimizing execution time.



This form of load bdancing, aso known as time balancing, is generdly accomplished by
solving a st of equations, such as the following, to determine the data assgnments:

EMD)=E({D) "ij ()

A Di = Drota .
D; is the amount of data assigned to resource i; Drota IS the tota amount of data for the job; and
E(D)) is the execution time of task on resource | and is generdly parameterized by the amount of
data on D;. It can be cdculated by usng a performance modd of the task such as the following
(note that the performance of an application can be affected by the future capacity of both the
network bandwidth behavior and the CPU availahility):

E(Di) = Comm(Dy)* (futureNWCapacity) + Comp(D;) * (futureCPUCapacity).

To proceed, we need mechanisms for (&) obtaining some measure of future capability and (b)
trandating this measure into an effective resource capability. Two measures of future resource
capability are important: the expected vaue and the expected variance in that vaue One
approach to obtaining these two measures would be to regotiate a service level agreement (SLA)
with the resource owner to contract to provide the specified capability [9]. Or, we could use
higtorica data to predict future behavior [12,27,29,31,33,34,36]. We focus in this aticle on the

latter gpproach but emphasize that our results for topic (b) are aso applicablein the SLA case.

4 One-Step-Ahead Prediction Strategies Study
We present two families of drategies (1) homeodatic prediction and (2) tendency-based

prediction. Each drategy predicts the one-step-ahead value based on a fixed number of
immediately preceding history data meassured a a condant-width time interva. We use the
following notation: V't is the measured vaue a the Tth measurement; R is the predicted vaue

for measurement value Vr+1; and N isthe number of history data points used in the prediction.



4.1 Homeostatic Prediction Strategies
“Homeodtatic prediction drategies’ work on the assumption that if the current vdue is

gregter (less) than the mean of higtory vaues, then the next vaue is likely to decrease (increase).

More formdly, thiskind of strategy can be expressed asfollows:

if (V1 > Meany) then

Pt1+1 = V1 — DecrementValue;

[Optional DecrementValue adaptation process]
else if (V1 < Meanr) then

P+ = V1 + IncrementValue;

[Optional IncrementValue adaptation process]
else

Pra = V1,

where Meanr isthe mean of the N higtory data points, caculated by the following formula
Meant = (Si=1.n Vi)IN. 2

At every prediction step, the increment or decrement value can be an independent vaue or a
relative vaue proportiona to the current measurement. The increment or decrement vaue can be
“gatic,” such that it is fixed for dl prediction seps, or “dynamic,” such that it is adapted to the
time seies a each dep. Different combinations result in four homeodatic prediction drategies.
independent  dtatic, independent dynamic, relative datic, and relaive dynamic. We present a
detalled description of these drategies next. Our sdection for the parameter vaues for each

strategy is discussed in Section 4.3.1.

411 Independent Static Homeostatic Prediction Strategy
The independent static homeodatic Strategy generates a prediction by changing the current

vadue by a fixed amount, without any adaptation process. The decrement (increment) constant

may change depending on the training set. Vaues between 0.05 and 1 are reasonable.

4.1.2  Independent Dynamic Homeostatic Prediction Strategy
The independent dynamic homeodtatic drategy dynamicdly adjusts the amount of the

increment or decrement value by means of an adaptation process.



Measure V.. /I DecrementV al ue adaptation process:
RealDecVaIueT =Vr- VT+1;
DecConstantt.; = DecConstantt + (RealDecValuer — DecConstanty) * AdaptDegree;
Measure Vr.1; /I IncrementV alue adaptation process:
ReallncValuer = V141 - V1.
IncConstant.; =IncConstantt + (ReallncValuer - IncConstanty) * AdaptDegree;

At each time gep, after we measure the red data ( vr..), we caculate the difference between the
current measured vadue and the last measured vaue, thus determining the read decrement
(increment) we should have used in the last prediction in order to get the actual value. We adapt
the vaue of the decrement (increment) value accordingly and use the adapted IncCongant (or
DecCongtant) to predict the next data point. The parameter AdaptDegree can range from 0 to 1
and expresses the adaptation degree of the variaion. If AdaptDegree is equd to O, the
DecCongtant+1 (IncCongtantr+1) is not adapted at all, and we have nonadaptation (or a static
approach). If AdaptDegree is equa to 1, the DecCongtantr+1 (IncCongtantr+:) is equd to
RedDecVduer (RedIncVduer), or full adaptation. The god is to obtan a vaue of
AdaptDegree that results in minima average eror rae vaues between 0.05 and 1 ae

reasonable.

4.1.3 Relative Static Homeostatic Prediction Strategy
The relative static homeodtatic dtrategy assumes thet a larger load value has more potentid to

change than does a smdler load vaue. Thus this drategy modifies the independent datic
homeodtatic prediction srategy so that the increment or decrement applied to a prediction is
proportional to the current vaue indead of a congant vaue. The decrement (increment) vaue
can be expresssed by DecrementVaue= Vi* DecrementFactor (IncrementVdue= Vt*

IncrementFactor). Increment or decrement vaues between 0.05 and 1 are reasonable.

414  Relative Dynamic Homeostatic Prediction Strategy
The relative dynamic homeodtatic srategy dters the prediction vaue by a relative amount, as

does the redaive datic homeodatic drategy, but alows the vaue of IncrementFactor and



DecrementFactor to be adapted dynamicdly, using the same method as in the independent

dynamic homeodtatic prediction strategy.

4.2 Tendency-based Prediction Strategies

Our second family of prediction drategies predicts the next vaue according to the tendency
of the time series change. This approach assumes that if the current value increases, the next
vaue will dso increase and that if the current vaue decreases, the next vaue will dso decresse.

Formally, tendency-based prediction strategies can be expressed as follows:

if (V1 - V1.1)<0) /IDetermine Tendency
Tendency="Decrease”;
else if (V1.1 - V1)<0)
Tendency="Increase”;
if (Tendency="Decrease”) then
P+1:1 = V1 — DecrementValue;
DecrementValue adaptation process
else if (Tendency="Increase”) then
P11 = V1 + IncrementValue;
IncrementValue adaptation process

The variation (DecrementVadue and IncrementVaue) can be an independent or reaive vaue
proportiond to the current vaue. Since the dtatic prediction Strategies dways give worse results
than does a smple last-vadue prediction drategy in the initid experiments, we exclude the datic
case from this discusson.

Tendency-based strategies have an additional possble source of error. Since it is impossble
to predict when a time series is going to “change direction,” a large error can occur a the turning
point. To minimize this kind of error, we use the mean of the history data as the threshold value.
In the increase phase, if the current data is smaler than the threshold vaue, the variation will be
adapted normdly; if the time series increases to a vaue tha is bigger than the threshold vaue,
the next sep may be a turning point. We cdculae the percentage of the history data that is
gregter than the current data and use this value as the possihility of current data not being a

turning point. The larger the current value is, the more possible that it is the turning point, and



the less the percentage of the higtory data bigger than it is. So the IncrementVaue adaptation
process can be expressad in the following way.

Meany = (Si=1.n Vi)IN;

ReallncValuer = V11 - V.

Normallnc = IncValuet+(ReallncValuet IncValuet)* AdaptDegree;

if (V1+1 < Mean) // normal adaptation
IncrementValuer.; = Normalinc;

else
PastGreatert=(the number of past data points greater than V) /N;
TurningPointinc = IncValuet*PastGreaterr.
IncrementValuer.;=Min(abs(Normalinc), abs(TurningPointinc));

Normdinc is the vadue of the IncrementVauer.; in the case of norma adaptation. When the
current value is higher than Meany, it may be a turning point, and the vaue of PastGregterr (the
percentage of the past time series vaues greater than the current vaue) will be smdl (<0.5).
Hence, the posshility that the current vadue is not the turning point is smdl, 0 we adjust the
increment vaue accordingly. If we predict the vaue to go in the wrong direction, the error is ill
gndl. (The DecrementVadue can be adapted in the same way by using the percentage of the
history data smdler than current value when the current value decreases to a vaue smaler than

the threshold vaue))

421 Independent Dynamic Tendency Prediction Strategy
The independent dynamic tendency drategy predicts the next step vaue by adding or

subtracting an independent increment or decrement vaue from the current vaue according to the
tendency of the vaue change. For this drategy, we determined the increment and decrement

vauesjust aswedidin Sections4.1.1 and 4.1.2.

4.2.2  Relative Dynamic Tendency Prediction Strategy
The rddive dynamic tendency drategy is smilar to the independent dynamic tendency

prediction strategy except that the increment vaue or decrement value is in proportion with the
current value. The increment and decrement vaues are determined in the same way as for the

relative static and dynamic homeostatic approaches, discussed in Sections 4.1.3 and 4.1.4.



4.2.3  Dynamic Tendency Prediction Strategy
In initid experiments usng CPU load time series the independent tendency prediction

drategy resulted in better predictions during an increese phase and the relative tendency
prediction srategy generadly resulted in better predictions during a decrease phase. One possible
explanaion is tha while a CPU time series is increasing, the independent tendency Strategy
better tracks the behavior because of very smdl increases independent of the actud vaue of the
prediction, but that during the decrease phase the rdative prediction Strategy applies a vaue is
proportional to the current value more in keeping with the trend of the load behavior. Further
experiments (Section 4.3) support this tentative explanation..

Because of this initid result, we define a mixed tendency-based prediction drategy that
predicts the next value for an increase phase using the independent tendency prediction Srategy
and for a decrease phase uses the relative tendency prediction strategy.

DecrementValue=V+*DecrementFactor
IncrementValue=IncrementConstant

For completeness, we examined the use of the independent congtant in the decrement phase and a

relative vaue in the increment phase, but worse predictions resulted in al cases.

4.3 Prediction Strategy Evaluation

We ran two sets of experiments using our predictors. In the fird s, we ran dl of our
predictors on a smdl st of time series over which we had complete control, and we evauated
the effect of different collection rates on our own predictors, on a smple last-vaue predictor, and
on the Network Wesather Service (NWS) [33,34]. In the second set, we ran a larger set of 38 load
traces and evaluated only our best predictor and NWS.

The last-value predictor uses the current measured vaue as the predicted vaue of the next

measurement. Harchol-Bdter and Downey [21] show that this is a useful prediction Srategy for
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CPU resources. It has low computation and storage overhead and is the default predictor in
severd current systems because of its smplicity.

NWS dynamicaly sdects the best predictor from a set that includes mean-based prediction
drategies, mediantbased prediction drategies, and AR modd-based prediction drategies. Its
forecasts are equivdent to, or dightly better than, the best forecaster in the set. Hence, if our
prediction srategy performs better than the NWS predictor, it can perform better than al the
prediction techniquesin the st.

We did no modd fitting for any of the expeiments as is commonly needed in linear
regresson techniques. Ingtead, the parameters were defined by using training data off-line before
the experiments, as described in Section 4.3.1. Thus we minimized the run-time cost (on

average, thisis only afew milliseconds per prediction).

431 Input Parameters
To determine the input parameters, we ran 25 experiments each involving a one-hour CPU

load time series, and we evauated increment and decrement vaues at intervas of 0.05 between 0

and 1 using the following error formula

a._

abg(Pi- Vi)/Vi
1.N *100%
Average Error Rate= N ©)

The vaue that results in minima average error rate is consdered best. For our experiments, we
found the best results with IncrementConstant= DecrementConstant = 0.1, IncrementFactor =
DecrementFactor = 0.05, and AdaptDegree = 0.5, and used them for al of our predictions.

We adso dudied the sendtivity of the mixed variation prediction dtrategy to a sdection of
AdaptDegree parameter vaues,; the details can be found a [36]. We concluded that the vaue of
the parameter does not sgnificantly affect the prediction capability of our drategy as long as

extremes are avoided, and we therefore sdlected an intermediate value of 0.5 for our studies.
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4.3.2  Prediction Strategy Evaluation
We ran a sat of experiments on four machines to evauate the prediction drategies presented

in Section 4.1 and 4.2. For each machine, we collected one set of data (spanning roughly 28
hours) and then examined it as three different time series 0.1 Hz (measure the data every 10
seconds) with roughly 10,000 data points; 0.05 Hz (measure the data every 20 seconds), and
0.025Hz (measure the data every 40 seconds). Detailed discusson of the properties of the time
series can befound in [36].

We evduated our time series prediction Srategies on twelve CPU load time series. The error
raes and the standard deviations of the prediction strategies when tested againgt these time series
are shown in Table 1, with the best predictors shown in boldface.

All the prediction Srategies gave less accurate prediction on average for the traces with lower
frequency. We dtribute this result to () data points being more widdly spaced in time, so the last
data points are not as “current” as the traces where there is more data, and (b) the prediction
point beng father in the future We dso see that the independent static homeodatic drategy,
without any dynamic adjustment, dways gives the worst results.

Tendency prediction drategies outperform other prediction dSrategies dmost in dl cases In
paticular, the drategy usng mixed vaiation gives better performance on average than the other
two tendency prediction drategies for time series collected from different machines. It dso
achieves the smdlest or near-smdlest standard deviation of prediction error on 12 time series.
Moreover, tendency prediction with the mixed variation method outperforms the NWS predictor

on al time series, with an average prediction error 20.68% less than that of the NWS predictor.
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Tablel: Theerror of different prediction strategies, with the best in each case shown in boldface.

(1) Mean and standard deviation of the prediction errors on time series collected from abyss.cs.uchicago.edu
0.1Hz 0.05Hz 0.025Hz
Mean SD Mean SD Mean SD
Independent Static Homeostatic 496.10% | 4.2855 || 492.26% | 4.3583 || 488.90% | 4.4384
Independent Dynamic Homeostatic || 12.50% 0.2369 || 2551% 0.4153 | 56.70% 0.9756

Relative Static Homeostatic 1340% | 02115 || 24.85% | 02771 | 44.37% 0.3960
Relative Dynamic Homeostatic 1353% | 02585 || 2867% | 0.6984 | 59.57% 15305
Independent Dynamic Tendency 11.42% 0.2097 || 21.45% 0.2742 | 40.44% 0.3949
Relative Dynamic Tendency 11.54% 0.2338 || 20.40% 0.3203 || 36.15% 0.4799
Mixed Tendency 11.13% | 02094 || 19.48% | 0.2741| 34.23% | 0.3941
Last Value 14.40% | 0.2068 || 25.84% | 0.2742 | 45.62% 0.3984
Network Wesather Service 1343% | 02071 || 25.08% | 0.2760 | 45.8%% 04315
(2) Mean and standard deviation of the prediction errors on time series collected from vatos.cs.uchicago.edu
01Hz 0.05Hz 0.025Hz

Mean SD Mean SD Mean SD
Independent Static Homeostatic 333.75% | 40129 | 340.31% | 4.0151 | 360.14% | 3.9996
Independent Dynamic Homeostatic || 12.76% 0.2067 || 26.19% 0.3531 || 66.62% 1.0480

Relative Static Homeostatic 16.46% 01929 [ 30.16% | 0.2561 || 57.52% 0.3906
Relative Dynamic Homeostatic 15.48% 04531 || 33.73% 0.8334 || 10255% | 3.5787
Independent Dynamic Tendency 12.38% 0.1926 || 22.78% 0.2583 || 43.16% 0.3699
Relative Dynamic Tendency 11.77% 0.2722 || 20.25% 0.3735 || 36.85% 0.5569
Mixed Tendency 10.78% | 01947 |[ 18.74% | 0.2607 | 34.31% | 0.3628
Last Value 16.50% 0.1879 2940% | 0.2510| 57.14% 0.3874
Network Wesather Service 1553% 01883 || 25.00% | 0.2515 || 57.33% 0.3913
(3) Mean and standard deviation of the prediction errors on time series collected from mystere.ucsd.edu

0.1Hz 0.05Hz 0.025 Hz

Mean SD Mean SD Mean SD
Independent Static Homeostatic 158.09% | 1.9350 [ 167.71% | 1.9891 || 185.06% | 2.1680
Independent Dynamic Homeostatic | 21.24% 0.2655 || 3847% 0.3867 || 70.20% 0.5989
Relative Static Homeostatic 2221% | 0.1929 | 37.94% 0.2329 [ 63.09% 0.3731
Relative Dynamic Homeostatic 43.81% 15344 |[ 85.09% 22558 || 156.26% | 4.3681
Independent Dynamic Tendency 18.38% 0.2097 || 34.96% 0.2632 || 62.10% 0.4109
Relative Dynamic Tendency 29.01% 0.8312 || 55.81% 12062 || 10345% | 2.0504
Mixed Tendency 17.31% | 0.2639 || 32.21% | 03773 || 55.81% | 0.5749
Last Value 19.86% | 0.2045 || 35.56% 0.2270 || 99.47% 0.3445
Network Weather Service 1888% | 01945 || 34.92% 0.2288 | 96.96% 14816

(4) Mean and standard deviation of the prediction errors on time series collected from pitcairn.mcs.anl.gov

0.1 Hz 0.05Hz 0.025 Hz

Mean SD Mean SD Mean SD
Independent Static Homeostatic 6.94% | 0.0352 6.29% | 0.0425 7.83% | 0.0482
I ndependent Dynamic Homeostatic 254% | 0.0262 423% | 0.0407 7.70% | 0.0568
Relative Static Homeostatic 2.73% | 0.0248 445% | 0.0364| 717% | 0.0462
Relative Dynamic Homeostatic 268% | 0.0242 448% | 0.0371 729% | 0.0515
Independent Dynamic Tendency 243% | 00239 411% | 0.0365 7.07% | 0.0476
Relative Dynamic Tendency 2.29% | 0.0237| 3.91% | 0.0409 7.3% | 0.0575
Mixed Tendency 2.29% | 0.0237| 3.91% | 0.0409 7.38% | 0.0574
Last Value 2.69% | 0.0242 446% | 0.0364( 7.24% | 0.0473
Network Weather Service 26% | 0.0242 449 | 0.0365 747% | 0.0479




433 Varied Time-Series Comparison
We adso compared the techniques on a larger set of CPU load time series collected by Dinda

[14]. These week-long, 1 Hz resolution time series represent 38 different machines, including
production and research cluster machines, computer servers, and desktop workstations. The time
series have complex, rough, and often multimoda didributions that are not wel fitted by
andytic didributions such as the normad or exponentid didributions. All of the time series
exhibit a high degree of sdf-gmilaity and epocha behavior. Detalled datistica properties of
these CPU load time series can befound in [14].

For our experiments, we selected 38 one-day time series collected on August 18, 1997. The
experimenta results show that the mixed tendency prediction drategy outperforms the NWS
predictors on dl 38 time saries with different properties. Specificdly, it achieves a prediction
error that is 36% lower on average than that achieved by NWS.

Our experiments also showed that this predictor does not perform well on network data
Instead, the NWS predictor is the best overdl. One possible explanation is that for most of the
network cgpability time series, the autocorrdation function value between two adjacent
observations is smdl. Our new homeostatic and tendency-based prediction drategies, which give
more weight to recent data, cannot track the trend in network capability time series well. NWS
predictors, teking account of more datisic information, will give better a prediction for these

time series. To predict future network capability information, we therefore used NWS predictors.

5 Mean and Variance Prediction
We now describe how the time series predictor can be extended to obtain three types of

predicted resource performance information: the next-step predicted resource cepability a a

future time point (Section 5.1); the average interval resource capability for some future time
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interval (Section 5.2); and the variation of resource cgpability over some future time interva

(Section 5.3).

5.1 One-Step-Ahead Resource Capability Prediction
For the one-step-ahead prediction, we treat the measured preceding resource capdbility time

series as the input to the predictor. The predictor’s output is the predicted resource capability at
the next step. For CPU load prediction, we use our mixed tendency strategy as the one-step-
ahead predictor. For network capability prediction, we use the NWS predictor because it

performs better.

5.2 Interval Resource Capability Prediction

The second type of prediction technique involves predicting the resource capability over the
time interval during which an application will run. Since both the CPU load and network
bandwidth time series exhibit a high degree of sdf-amilaity [8,15], averaging vaues over
successively larger time scales will not produce time series that are dramaticaly smoother. Thus,
to cdculate the predicted average resource capability an application will encounter during its
execution, we need to first aggregate the origind capability time series into an interva cagpability
time series and then run predictors on this new intervad time series to estimate its future vaue.

Aggregation condsts of conveting the origind capability time saies into an interva
capability time series by combining successive data over a nonoverlapping larger time scae. The
aggregation degree M is the number of origind data points used to cdculate the average vaue
over the time interval. This value, which can be approximate, is determined by the resolution of
the origind time series and the execution time of the applications. For example, the resolution of
the origind time series is 0.1 Hz, or measured every 10 seconds. If the estimated agpplication

execution time is about 100 seconds, the aggregation degree is 10. In other words, 10 data points
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from the origina time series are needed to calculate one aggregated vaue over 100 seconds. The

process of aggregation is

C= ¢y - Cromrt--CrmsCrm Crmttre--Cno1sCa
—
A= a .. a, a, k= é/My

C=C1,Cz,...,Cn IS the origind preceding capability time series measured a congant-width time

interval and A=ay,a, a (k=Y MUy isthe interva capability time series, calculated by

[
a '—1MC”' (k-i+D*M +j
a-=-—=
M

Each vdue in the intervd cgpability time series a is the average resource capability over the

i=1k . @

timeinterva that is gpproximately equa to the gpplication execution time.

Next, we use the one-step-ahead predictor on the aggregated time series to predict the mean

interva cgpability.

€y, Co....Co > Aggregation p—a,, @,,..8,—~— Predictor —pa,,

The output pax+1 is the predicted value of aw1, which is approximately equa to the average

resour ce capability the application will encounter during execution.

5.3 Resource Capability Variance Prediction

To predict the variation of resource capability, during the execution of an gpplicatiion, we
cdculate the standard deviation time series usng the origind resource capability time series C

and the interva resource capability time series A (defined in Section 5.2):

=Lk . )

o
S =\/aj:l“ (Co- - ivarme - A)°
M

Each vaue in gandard deviation time series 5 is the average difference between the resource

cgpability and the mean resource capaility over theinterval.
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To predict the standard deviation of the resource cegpability, we use the one-step-ahead
predictor on the standard deviation time series. The output psc1 will be the predicted vaue of

S+1, Or the predicted cgpability variation for the next time intervd.

sd.
calculation

,S,,...5, > Predictor »—ps,,,

cy, cz,...cn-l— Aggregation p— a,, a,,...a,~

6 Conservative Scheduling
In this section, we show how we used the three types of predicted information from Section 5

to guide the data mapping decisons in two different contexts a CPU-bound astrophysics

goplication (Cactus) and a GridFTP implementation in the Globus Tool kit©.

6.1 Data Parallel Application Scheduling
We firg applied our scheduling dgorithms in the context of Cactus [3,4], a numericd

modeling sysem used here to smulate a 3D scdar fidd produced by two orbiting astrophysica
sources. This gpplication decomposes the 3D scdar fidld over processors and places an overlap
region on each processor. For each time step, each processor updates its local grid point and then
synchronizes the boundary vaues. It is an iterdive, loosdy synchronous application. We used a
one-dimensond decompogdtion to patition the workload. The full performance modd for

Cactusis described elsewhere [24], but in summary it is
E(Dy) = gart_up time+(D;* Comp; (0) + Comm; (0)) * dowdown(effective CPU load).

The dartup time incurred when initiating computation on multiple processors in a workgation
cluster was experimentaly measured. Comp; (0) and Comm; (0), the computation time of per data

point and communication time of Cactus in the absence of contention, was caculated by using
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formulas described in [25]. The function dowdown(effective CPU load), which represents the
contention effect on the execution time, was caculated by usng the formula described in [24].

Cactus peformance is greetly influenced by the actud CPU peformance achieved in the
presence of contention from other competing applications. The communication time is less
ggnificant when running on a locd area network, but for wide-area network experiments this
factor would dso be parameterized by a capacity measure. To capture the impact of contention,
we defined the effective CPU load to be the intervd load prediction (Section 5.2) plus the
predicted variance (Section 5.3) in that quantity. We then used this quantity when alocating

work to computers, with the effect that lesswork is alocated to highly varying machines.

6.2 Parallel Data Transfer Scheduling
The increesingly common practice of usng multiple didributed dorage sysems as a

digributed data store within which large datasets may be replicated has led to the problem of
how to access replicated data efficiently. Multiple-source pardld trandfers can improve data
throughput time by fetching data from severa replicas in pardld. However, we then face the

problem of deciding how to digtribute the data load among different storage resources.

6.2.1  Network Capability Prediction
We assume that the target set of sources is fixed, and we focus on the data alocation problem

for multiple-link pardle data transfers. Our god is to baance load between network links so that
each link finishes trandferring a roughly the same time. To this end, we use a time-baancing
mechanism to made data assgnment decisions, as accomplished by Formula 1 (Section 3).

For pardld data transfer problems, E(D) is the time needed to transfer O data from ith data
source to the dedtination. It can be caculated by using the formula E{D;) = Effectivelatency; +

Di/EffectiveBandwidth. Thus, we fird determine the vaue of effective network capability the
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data transfer will experience during the entire trandfer period. We then use this effective
cgpability in the time-baancing formula to decide the data- mapping Strategy.

Because network capability can have a large variation — sometimes twice the mean — a tuning
factor dso is needed to limit the influence of the standard deviation on the mean. To dlow for
the use of variation informetion, we define the effective bandwidth of a link as Effective
Bandwidth = BandwidthMean + TF * BandwidthSD, where BandwithMean is the predicted
mean bandwidth of the network link the data will encounter during transfer, BandwidthSD is the
predicted variation of bandwidth of the network link the data will encounter during transfer, and
TF is a per link tuning factor that determines how @nservative the data alocation policy should
be. For links with higher variation, we prefer a more conservative scheduling policy.

Note that we focus here on the bandwidth because, in our experiments, the latency is only a
very smdl portion of the totd data transfer time: < 0.1% for network links within one domain,

and <1% for network links across domains.

6.2.2  TheTuning Factor
We cdculate EffectiveBandwidth usng a formula based on the base predicted mean

bandwidth value, the tuning factor, and the standard deviaion. Specificaly, we vary the number
of standard deviations added to the base bandwidth mean vaue usng TF. The basc idea is to
as3gn less data on network links with a larger variability in performance. Thus, we require a TF
vdue tha is inversdy proportiond to the variance of the network bandwidth. The TF vadue, in

addition, must be able to limit the vdue added to the mean. We thus define TF with the

agorithm in Fgure 1.
N=SDY Mean
If (N>1)

TF=1/ (2*N?) ;
El se

TF=1/ N- N 2;

Figure 1:Thealgorithm to compute our tuning factor.

19



Thisdgorithm will give a TF that has the following characterigtics:
TF = 0 to ¥2 when SD/Mean > 1. The higher variation the network link has in its
cgpability, the higher the N vaue it will have. When the standard deviation is larger
than the mean of the bandwidth (SD/Mean>1), the network is considered to be high
vaiaddle and less relidble. We want a smdler TF and thus a smdler effective
bandwidth value.
TF = Y2 to 8 when SD/Mean <= 1. When the standard deviation is smaler than the
mean of the bandwidth (N <= 1), the network link is consdered to be low variable and
more reliable. We want alarger TF vaue and thus alarger effective bandwidth vaue.
In both cases, the values of TF and TF*SD are inversdy proportional to N.

To illugrate our idea, we cdculae the vdue of TF and TF*SD by our agorithm, while fixing
the mean bandwidth vaue equa to 5 Mb/s and changing the standard deviation of bandwidth
from 1 to 15. We find tha the values of both TF and TF*SD are inversely proportiona to the
bandwidth standard deviation (and N), for a fixed mean. For network links with higher variation,
we will have a smdler TF and smdler effective bandwidth value and thus a more conservative
data-scheduling decison. The vaue added to the mean is less than the mean of the bandwidth.
The vdidity of the tuning factor and the tuned consarvative scheduling method is evauated in
the next section. However, we acknowledge that other approaches for caculaing the TF vaue

may further improve the efficiency of the tuned conservative scheduling method.

7 Conservative Scheduling Experiments
To vdidate our scheduling Strategy, we applied it in two contexts: a CPU-bound astrophysics

goplication and a GridFTP implementation. We conducted experiments on the GrADs [6] test

bed, which comprises worksation clusters a the University of Chicago, Universty of Illinois at
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Urbana-Champaign, Universty of Tennessee, Universty of Cdifornia & San Diego, University

of Houston, and University of South California s Information Sciences Indiitute.

7.1 Data-Parallel Application Experiments
7.1.1 Experimental Methodology

To show the efficiency of our conservative scheduling policy, we compared the execution
times of the Cactus gpplication with five scheduling policies:

(1) One-Step Scheduling (OSS): Use the one-step-ahead prediction of the CPU load, as

described in Section 5.1, for the effective CPU |oad.

(2) Predicted Mean Interva Scheduling (PMIS): Use the interval load prediction, described
in Section 5.2, for the effective CPU load.

(3) Conservative Scheduling (CS): Use the conservative load prediction.

(4) Higory Mean Scheduling (HMS): Use the mean of the hisgory CPU load for the 5
minutes preceding the agpplication dart time for the vaue for effective CPU load. This
gpproximates the estimates used in severa common scheduling approaches [30,32].

(5) Higory Consarvative Scheduling (HCS): Use the consarvative estimate CPU load defined
by adding the mean and variance of the higory CPU load collected for 5 minutes
preceding the application run as the effective CPU load. This approximates the prediction
and dgorithmsused in [28].

At UIUC, we used a clugter of four 450 MHz Linux machines. At UCSD, we used a cluster
of 9x Linux machines four machines with a 1733 MHz CPU, one with a 700 MHz CPU, and
one with a 705 MHz CPU. At Argonne, we used a cluster of thirty-two 500 MHz CPU Linux
machines. All machines were dedicated during experiments.

To evauate the scheduling policies under identicd workloads, we used a load trace playback

tool [17] to generate a background workload from a trace of the CPU load that results in redlistic
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and repeatable CPU contention behavior. We chose 64 load time series from [1] with different
mean and vaiation. We did experiments with 10 different configurations. Complete results and

discussion can be found at [37]. Representative results are andyzed in the following section.

712  Experimental Results

To compare the various policies, we used three metrics. an absolute comparison of run times,
a reative measure of achievement, and a datidicd andyss to show the sgnificance of the
improvement of our drategy. The fird metric gives a rough vauaion on the performance of each
scheduling policy over a given interva of time. Over the entire run, the Conservative Scheduling
policy exhibited 2%-7% less overdl execution time than did the Hisory Mean and Higtory
Conservative Scheduling policies, by using better information prediction, and 1.2%-8% less
overd|l execution time than did the One Step and Predicted Mean Interval Scheduling policies.
We ds0 see that teking variation information into account in the scheduling policy results in
more predictable application behavior. The Higory Consarvative Scheduling policy exhibited
2%-32% less standard deviation of execution time than did the History Mean. The Consarvative
Scheduling policy exhibited 1.5%—-77% less standard deviation in execution time than did the
One-Step Scheduling policy and 7%—41% less standard deviation of execution time than did the

Predicted Mean Interva Scheduling policy.

The second metric we used, Compare, is a relative metric that evauates how often each run
achieves a minima execution time. We condder a scheduling policy to be “better” than others if
it exhibits a lower execution time than another policy on a given run. Five possbilities exist: best
(best execution time among the five palicies), good (better than three policies but worse than
one), average (better than two policies and worse than two), poor (better than one policy but

worse than three), and worst (vorst execution time of al five policies). The reaults indicate thet

22



Conservative Scheduling using predicted mean and variation information is more likely to have a
“best” or “good” execution time than are the other approaches on both clusters. Clearly, taking
account of the average and varigion CPU information during the period of application can
sgnificantly improve the application’s performance.

The third metric involves usng a T-test to show the sgnificance of the improvement of our
drategy over other strategies. A Ttest is a satistical method used to assess whether the means of
two groups are dgnificantly different from each other [2]. The result of a T-test is a set of P-
vaues tha indicate the posshbility that the differences could have happened by chance a lower
P-vdue means a more dgnificant difference between two groups, so for our experiments smaller
numbers are better. T-tests can be paired or unpaired — a pared T-test is used when the two
groups are not independent, and an unpaired test is used when the two groups are independent.
For our experiments, we caculated both paired and unpaired T-tests because it was not aways
clear whether the groups should be consdered independent of one ancother. In addition, T-tests
can be one-taled, an option that is used when one group is expected to dways be less than (or
greater than) the other and we know that direction, or two-tailed, an option that is used only to
show a difference that can sometimes be less and sometimes be greater. Since our drategy
should aways be better than the other drategies, we used a one-tail test. The results of the F
tests show that most P-vaues, especidly those for paired Ttests, are kelow 10%. These results

indicate that the possibility of the improvement happening by chance is quite smal.

To summarize: Independent of the loads, CPU capabilities, application execution time, and
number of resources, the Consarvative Scheduling policy based on our tendency-based

prediction drategy with mixed variation achieved better results than the other policies. It was
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both the best policy in more Stuations under al load conditions on al clusters and the policy that

resulted in the shortest execution time and the smdlest variation in execution time,

7.2 Parallel Data Transfer Experiments

721

Experimental M ethodology

We compare five scheduling policies.

@

2

3

(4)

Q)

Best One Scheduling policy (BOS): Retrieve data from the network link with the highest
predicted mean bandwidth.

Equa Allocation Scheduling policy (EAS): Retrieve the same amount of data from each
source.

Mean Scheduling policy (MS): Allocate data according to the time bdancing formula
and use the interval bandwidth prediction for the effective bandwidth. This is equivaent
to atuning factor equal to O.

Nontuned Stochagtic Scheduling policy (NTSS): Allocate data according to the time-
badancing formula and use nontuned bandwidth varigbility to adjust the vaue of
effective bandwidth. Thisis equivalent to atuning factor equa to 1.

Tuned Conservaive Scheduling policy (TCS): Allocate data according to the time
baancing formula, and use the tuning factor as described in Section 6.2.2 to decide how
conservative the scheduling policy should be. For links with higher variability, we
estimate more conservative effective bandwidth and thus dlocate less data. The value of
the tuning factor adapts from O to 1 according to the variation in bandwidth, usng the

formulagiven in Section 6.2.2.

We implemented multiple-link pardld data transfers usng the partid data transfer function

provided by GridFTP, part of the Globus Toolkit [19]. We measured the paradle data transfer

time achieved for the five scheduling policies on different sets of machines, every st included
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three source machines and one dedtination machine. Each machine had a replica of the file and
provided pat of the data, with the amount transferred from each source determined by the
scheduling policy. Each par of source and degtination links opened one TCP socket. The
networks may encounter contending load from other users during our experiments.

We dternated scheduling policies for the same data transfers so that any two adjacent runs
experienced smilar load and variation in the environment. For each set of experiments we
performed gpproximately 100 runs, but the experimentd data was consgtent with larger runs on
amilarly loaded platforms. For methods 1 and 3-5, the effective bandwidth and the data
dlocation drategy were recaculated before every run using the red-time information. Complete

experimentd results and discussion can be found at [38], summarized in the following section.

7.22  Experimental Results
To compare the various policies, we again used three metrics an absolute comparison of

trander times, a relative measure of achievements and a datigicad andyss of the ggnificance of
the improvement of our drategy. The fird metric involves an average mean and an average
gandard deviation for dl trandfer times of each scheduling policy as a whole. This metric gives a
rough evduation of the peformance of each scheduling policy over a given intervd of time. The
resuts show that over the entire run, the Tuned Conservative Scheduling policy exhibited 3%-—
51% less ovedl trander time than the Best One Scheduling and Equa Allocation Scheduling
policies (presumably because it takes load bdancing into account) and 2% to 7% less overdl
trandfer time than Mean and Nontuned Stochastic Scheduling policy (presumably because it
takes network performance variability into account). Moreover, consgdering load baancing and
vaidion information in the scheduling policy results in more predictable behavior: the Tuned
Conservative Scheduling policy exhibited a 1% to 84% smdler sandard deviation in transfer

time than the others.
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The second metric we used was Compare. As we had for the data-parale experiments, we
evaduaed five posshilities best, good, average, poor, and wors. The results show that Tuned
Consarvative Scheduling usng predicted mean and tuned variaion is more likdy to have a
“best” or “good” transfer time than are the other approaches. This fact suggests that one can
ggnificantly improve the trandfer time by appropriately teking account of the average and
vaiaion network information during the period of data transfer in the scheduling palicy.

The Equa Allocaion Scheduling policy was dways “wors” relative to the other approaches
in the dl but one experiments. The reason is that in these experiments, network capabilities are
highly heterogeneous. Thus, the EAS drategy of dlocating an equa amount of data to dl
sources results in “unbalanced” workload allocation and poor performance. In contrast, the Best
One Scheduling policy performed worst in one experiment. The reason rests with the fact that the
network capabilities are gmilar in this experiment, and thus load-bdancing drategies that
digribute load over multiple links tends to perform better than the Best One Scheduling Strategy
of sdecting asngle “best” link.

The third metric used was the T-test. For our experiments, we caculated both paired and
unpaired one-talled T-tests comparing the Tuned Conservetive Scheduling drategy with the
other four drategies. The results indicate that the possibility of the improvement happening by
chance is amdl. Thus, we conclude that our Tuned Conservative Scheduling policy achieves
sgnificant improvements relative to the other three Strategies in most cases.

To summarize our results. For dl loads and capabilities consdered, the Tuned Conservative
Scheduling policy achieved better results than did the other policies considered. It was both the
best policy in more stuations under dl load conditions and the policy that resulted in the shortest

trander time and the smdlest variation in transfer time.
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8 Conclusion
We have presented a consarvative scheduling policy that achieves efficient execution of data-

pardld agpplications and pardle data transfers in heterogeneous and dynamic environments.
This policy uses information about the expected mean and variance of future resource
capabilities to define data mappings appropriate for dynamic resources. Intutively, the use of
vaiance information is gppeding because it provides a measure of resource “rdiability.” Our
results suggest thet thisintuition isvaid.

Our work comprises three distinct components. First, we evauate two families of nove one-
step-ahead prediction strategies. Our results show that a dynamic tendency prediction mode with
different ascending and descending behavior performs best among dl drategies sudied. A
comparative study conducted on a set of 38 machine load traces shows that this new predictor
achieves much better results than do other techniques. However, we found experimentdly tha
this predictor cannot outperform NWS predictors when predicting the network capability as it
did on CPU load information prediction. One posshle explandion is the different autocorreation
behaviors between two adjacent measurements for CPU load and network load time series.
Previous dudies [11,35] reved that the CPU load is strongly corrdlated over time, and the
autocorrelation between two adjacent measurement could be as high as 0.95. But for most of the
network cgpability time series, the autocorrdation function vaue between two adjacent
observations is rather smal (only between 0.8 and 0.1). Our new homeodatic and tendency-
based prediction drategies, which give more weight to recent data, cannot track the trend in
network capability time series well. However, NWS predictors, which take account of more
datigtic information, will give better prediction for these time series.

We dso show how to obtain predictions of expected mean and variance information by

extending the one-step-ahead time series predictors. We use our best tendency-based predictor
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foo CPU load information prediction and NWS predictors for future network capability
prediction. But any one-step-ahead predictor that can outperform our predictors is dso applicable
and has the potentid to further improve the efficiency of our conservative scheduling Strategy.

Moreover, we show how information about expected future mean and variance (as obtained,
for example, from our predictions) can be used to guide data mapping decisons. In brief, we
assign less work to less rdiable (higher variance) resources, thus protecting ourselves againgt the
larger contending load spikes that we can expect on those sysems. We use a conservative
edimated CPU load predicion and effective bandwidth capability prediction for Cactus
goplication and GridFTP implementation, respectively, to make data dlocation decison by the
time-bdancing formula Our estimation is only one possble gpproach. There are many ways to
get the consarvative resource capability edtimation as long as (1) the edimated resource
capability is inversdly proportiond to the variance of the resource capability (that is, for resource
with higher variation in its peformance, we have a smdler edimaed effective resource
capability, thus less work load); and (2) the result is reasonable (e.g., the edtimated resource
cgpability should not be an infinite large number).

We gpply our prediction techniques and scheduling policy to a substantid astrophysics
gpplication and a data transfer gpplication. Our results demonstrate that our echnique can obtain
better execution times and more predictable gpplication behavior than do previous methods thet
focus on predicted means done or that use variances in a less effective manner. While the
performance improvements obtained are modest, they are obtained conssently and with no

modifications to the gpplication beyond those required to support nonuniform data distributions.
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